This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and teachers. These materials may not be used for any commercial purpose without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in a virtual professional learning community, and/or provide access to course materials to parents, students and others.

Click to go to website: www.njetl.org

Ratios \& Proportions

2013-05-20
www.njctl.org

Use Normal View for the Interactive Elements

To use the interactive elements in this presentation, do not select the Slide Show view. Instead, select Normal view and follow these steps to set the view as large as possible:

- On the View menu, select Normal.
- Close the Slides tab on the left.
- In the upper right corner next to the Help button, click the ${ }^{\wedge}$ to minimize the ribbon at the top of the screen.
- On the View menu, confirm that Ruler is deselected.
- On the View tab, click Fit to Window.

Use Slide Show View to Administer Assessment Items
To administer the numbered assessment items in this presentation, use the Slide Show view. (See Slide 9 for an example.)
Writing RatiosEquivalent Ratios

Click on the topic to go to that section

Rates

Proportions
Direct \& Indirect Relationships in Tables \& Graphs
Constant of Proportionality
Writing Equations for Proportions
Understanding Graphs of Proportions
Problem Solving
Scale Drawings
Similar Figures
Common Core: 7.RP.1, 7.RP.2, 7.G. 1

Return to Table of Contents

What do you know about ratios?

When have you seen or used ratios?

nalios

There are 48 animals in the field. Twenty are cows and the rest are horses.

Write the ratio in three ways:

a. The number of cows to the number of horses
b. The number of horses to the number of animals in the field

Remember to write your ratios in simplest form!

Inere are 21 cupcakes. Nine are cnocolate, 7 are vanilla and the rest are strawberry. What is the ratio of vanilla cupcakes to strawberry cupcakes?A 7:9B $\frac{7}{27}$C $\quad \frac{7}{11}$
D 1:3
inere are 21 cupcakes. Nine are cnocolate, / are vanilla and the rest are strawberry. What is the ratio of chocolate \& strawberry cupcakes to vanilla \& chocolate cupcakes?

- $A \frac{20}{16}$
- B $\frac{11}{7}$

○ $\quad \frac{5}{4}$
O $\quad \frac{16}{20}$

Inere are 21 cupcakes. Nine are chocolate, / are vanilla and the rest are strawberry. What is the ratio of chocolate cupcakes to total cupcakes?

A $\frac{7}{9}$
B $\frac{7}{27}$
C $\frac{9}{27}$

- D $\frac{1}{3}$

Inere are 21 cupcakes. Nine are cnocolate, I are vanilla and the rest are strawberry. What is the ratio of total cupcakes to vanilla cupcakes?A 27 to 9
B 7 to 27
C 27 to 7
D 11 to 27

3:2 is equivalent to 6:4

1 to 3 is equivalent to 9 to 27
$\frac{5}{6}$ is equivalent to $\frac{35}{42}$

There are two ways to determine if ratios are equivalent.

1. Common Factor

Since the numerator and denominator were multiplied by the same value, the ratios are equivalent
2. Cross Products

$\frac{4}{5}=\frac{12}{15}$

Since the cross products are equal, the ratios are equivalent.

$$
\begin{aligned}
4 \times 15 & =5 \times 12 \\
60 & =60
\end{aligned}
$$

True
False

6
$\frac{5}{9}$ IS equivalent to $\frac{30}{54} ?$

OTrue
False

18:12 is equivalent to $\frac{9}{6}$, which is equivalent to $\frac{36}{24}$?

True
False
\underline{L} is equivaient to
24 120 480

True
False

1:/ is equivaient to 10, wnicn is equivaient to 5 to $65 ?$ 70

True
False

Naices

Return to Table of Contents

Rate: a ratio of two quantities measured in different units

Examples of rates:
4 participants/2 teams
5 gallons/3 rooms

8 burgers/2 tomatoes

Unit rate: Rate with a denominator of one Often expressed with the word "per"

Examples of unit rates:
34 miles/gallon
2 cookies per person
62 words/minute

Six friends have pizza together. The bill is $\$ 63$. What is the cost per person?

Hint: Since the question asks for cost per person, the cost should be first, or in the numerator.

Since unit rates always have a denominator of one, rewrite the rate so that the denominator is one.

Click for practice.

Unit Price Game

Are you getting Value For Money?
The "Unit Price" tells you the cost per liter, per kilogram, per pound, etc, of what you want to buy.
It is a good way of comparing costs. To help you become expert at calculating Unit Prices we have this game for you:

10
Sixty cupcakes are at a party for twenty chilaren. How many cupcakes per person?

Jonn s car can travel 94.5 miles on 3 gallons ot gas. How many miles per gallon can the car travel?
ine snake can sitner 240 teet in nait a day. How many feet can the snake move in an hour?
inere are tive cnaperones at the dance ot 100 students. How many students per chaperone are there?

Ine recipe cails tor b cups ot tiour tor every tour eggs. How many cups of flour are needed for one egg?
 Sarah's unit rate in miles per hour?

We often use unit rates to easily compare rates.

Example:

Sebastian and Alexandra both work during the summer. Sebastian worked 26 hours one week and earned $\$ 188.50$ before taxes. Alexandra worked 19 hours and earned $\$ 128.25$ before taxes. Who earns more per hour at their job?

Sebastian

Jım traveled 480 miles on a full tank of gas. His gas tank holds 15 gallons.

Tara traveled 540 miles on a full tank of gas. Her gas tank holds 18 gallons.

Which person's car gets better gas mileage?

Jim
Tara

16 lanıra and Brendan going running at the track. Tahira runs 3.5 miles in 28 minutes and Brendan runs 4 miles in 36 minutes. Who runs at a faster pace (miles per hour)?

Show your work!

A Tahira
B Brendan

Kea apples cost \$3.40 tor ten. Green apples cost $\$ 2.46$ for six. Which type of apple is cheaper per apple?

Show your work!

A Red applesB Green apples

Fruity oats is \$2.40 tor a 12 oz. box. Snappy Rice is $\$ 3.52$ for a 16 oz. box. Which cereal is cheaper per ounce?

Show your work!

A Fruity OatsB Snappy Riceiwo families drive to their vacation spot. lIne Jones family drives 432 miles and used 16 gallons of gas. The Alverez family drives 319 miles and uses 11 gallons of gas. Which family got more miles per gallon of gas?

Show your work!A Jones Family
B Alvarez Family
iviariella typed 123 words in 3 minnutes. Enrique typed 155 words in 5 minutes. Who typed more words per minute?

Show your work!

A Mariella
B Enrique

Population Density: A unit rate of people per square mile
This data is compiled by the US Census Bureau every 10 years and is used when determining the number of Representatives each state gets in the House of Representatives.

LOW INCOME LEVEL
\$995 or less a year

| 100 | 1.000 | 10.000 |
| :--- | :--- | :--- | :--- |

People per square mile

LOWER MIDDLE
$\$ 996$ to $\$ 3.945$

200	\$006 to	\$3,945
100	1,000	10,000

People per square mile

UPPER MIDDLE \$3,946 to $\$ 12,195$

| 100 | 1,000 | 10,000 |
| :--- | :--- | :--- | :--- | People per square mile

HIGH

Io calculate population density:

- Find the population of the state. $\mathrm{NJ}=8,791,894$ people
- Find the area of the state. NJ = 7,790 square miles
- Divide

$$
8,791,894
$$

$$
=1,129
$$ square mile

2010 Census Interactive Population Search

迫 Print \| \dagger Share this page

NJ - New Jersey

Total Population	8,791,894
Housing Status (in housing units unless noted)	
Total	3,553,562
Occupied	3,214,360
Owner-occupied	2,102,465
Population in owner-occupied (number of individuals)	5,859,337
Renter-occupied	1,111,895

Population by Sex/Age	
Male	
Female	$4,279,600$
Under 18	$4,512,294$
$18 \&$ over	$2,065,214$
$20-24$	$6,726,680$
$25-34$	541,238
$35-49$	$1,109,801$
$50-64$	$1,942,813$
$65 \&$ over	$1,720,845$

Click to find area of another state and calculate the population density.

Fast Facts Study Guide

 (State Areas)This table ranks each state by area (Square Miles)
(Information from the U.S. Geological Survey.)

Rank	State Name	Area (Sq Miles)
1	Alaska	587,878
2	Texas	266,874
3	California	158,648
4	Montana	147,047
5	New Mexico	121,599
6	Arizona	114,007
7	Nevada	110,567
8	Colorado	104,100
9	Wyoming	97,818
10	Oregon	97,052

ine population ot inewark, NJ is 2/8,980 peopie in 24.14 square miles. What is its population density?

Ine population ot IVioorestown, NJ is 19,509 people in 15 square miles. What is its population density?

Moorestown, NJ
ine population ot vvaco, IX is 124,0uy peopie in 75.8 square miles. What is its population density?

Ine population ot Argentina is 40,091,359 people and Argentina is $1,042,476$ square miles. What is the population density?

ine population of San Luis, Argentina is 432,310 people and the Provence is 29,633 square miles. What is the population density?

San Luis, Argentina

Return to Table of Contents

A proportion is an equation that states that two ratios are equivalent.

Example:

$$
\begin{aligned}
& \frac{2}{3}=\frac{12}{18} \\
& \frac{5}{9}=\frac{15}{27}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{4}{5}=\frac{12}{15} & \frac{2}{3}=\frac{8}{9} \\
\frac{25}{72}=\frac{13}{24} & \frac{60}{96}=\frac{5}{8} \\
\frac{17}{19}=\frac{5}{7} & \frac{4}{9}=\frac{8}{16} \\
\frac{6}{11}=\frac{18}{33} &
\end{array}
$$

it one of the numbers in a proportion is unknown, mental math can be used to find an equivalent ratio.

Example 1:

$$
\begin{aligned}
& \frac{2}{3}=\frac{6}{x} \\
& \overbrace{x 3}^{2}=\frac{6}{x} \\
& \frac{2}{3}=\frac{6}{9}
\end{aligned}
$$

Hint: To find the value of x, multiply 3 by 3 also.
it one of the numbers in a proportion is unknown, mental math can be used to find an equivalent ratio.

Example:

Hint: To find the value of x, divide 32 by 4 also.

$$
\frac{2}{5}=\frac{8}{x}
$$

27 Solve the proportion using equivalent ratios?
$\frac{4}{9}=\frac{x}{36}$

28 Solve the proportion using equivaient ratios?

$$
\frac{7}{2}=\frac{35}{x}
$$

$$
\frac{x}{60}=\frac{4}{12}
$$

$$
\frac{3}{x}=\frac{21}{28}
$$

In a proportion, the cross products are equal.

$$
\begin{aligned}
& \frac{5}{2}=\frac{30}{12} \\
& 5 \cdot 12=2 \cdot 30 \\
& 60=60
\end{aligned}
$$

Proportions can also be solved using cross products.

$$
\begin{array}{ll}
\frac{4}{5}=\frac{12}{x} & \text { Cross multiply } \\
4 x=5 \cdot 12 & \\
4 x=60 & \text { Solve for } x \\
x=15 &
\end{array}
$$

Example 2

Cross multiply
$7 \cdot 48=8 x$
$336=8 x$

31 Use cross products to solve the proportion?

$$
\frac{9}{51}=\frac{x}{17}
$$

$$
\frac{x}{12}=\frac{56}{96}
$$

$$
\frac{45}{18}=\frac{x}{6}
$$

Use cross products to solve the proportion?

$$
\frac{2}{15}=\frac{x}{60}
$$

35 Use cross products to solve the proportion?

$$
\frac{7}{x}=\frac{3}{21}
$$

in
 Tables \& Graphs

Return to Table of Contents

You can determine if a relationship is proportional by looking at a table of values or the graph.

How?

Table
If all the ratios of numbers in the table are equivalent, the relationship is proportional.

Graph
If the graph of the numbers forms a straight line through the origin (0,0), the relationship is proportional.

On a field trip, every chaperone is assigned 12 students. Is the student to chaperone ratio proportional?

If you use a table to demonstrate, you would need several ratios to start.

Chaperones	1	2	3	4	5
Students					

Next, find the simplified ratios and compare them. Are they the same?

The local pizza place sells a plain pie for $\$ 10$. Each topping costs an additional $\$ 1.50$. Is the cost of pizza proportional to the number of toppings purchased?

Toppings	1	2	3	4
Cost (\$)				

is the relationship snown in the table proportional?
Yes
No

Year	1	2	4	5
Income	$\$ 22,000$	$\$ 44,000$	$\$ 88,000$	$\$ 110,000$

x	2	5	6	9
y	7	17.5	21	34.5

is the relationship snown in the table proportional?
Yes
No

x	1	2	6	9
y	5	11	31	46

x	1	2	4	7
y	4	8	16	35

x	2	4	6	8
y	-3	-10	-15	-20

Table

If all the ratios of numbers in the table are equivalent, the relationship is proportional.

Graph

If the graph of the numbers forms a straight line through the origin $(0,0)$, the relationship is proportional.

On a field trip, every chaperone is assigned 12 students. Is the student to chaperone ratio proportional?

Chaperones	1	2	3	4	5
Students	12	24	36	48	60

Chaperones

Example.
Draw a graph to represent the relationship. Is the relationship proportional?

X	Y
1	5.5
2	7
3	8.5
4	10

\bigcirc Yes
\bigcirc No

\bigcirc Yes
\bigcirc No

Return to Table of Contents

The constant of proportionality is a constant ratio (unit rate) in any proportional relationship.

We use the letter \boldsymbol{k} to represent the constant of proportionality.

Equations:

$$
y=k x \quad \text { or } \quad k=\frac{y}{x}
$$

We can find the constant of proportionality from a table of values, equation and a graph.

In a table, simplify any one of the ratios.

Chaperones	1	2	3	4	5
Students	12	24	36	48	60

$$
k=\frac{y}{x}=\frac{36}{3}=12
$$

Find tne constant ot proportionailty:

Apples (Ibs)	2	2.5	3	3.5	4
Cost (\$)	3.96	4.95	5.94	6.93	7.92

Click

Find the constant of proportionailty:

\mathbf{X}	\mathbf{Y}
3	4.5
4	6
5	7.5
8	12
9	13.5

Click

Find the constant of proportionality.

\mathbf{X}	\mathbf{Y}
2	1.5
5	3.75
10	7.5
12	9

4/ Find the constant of proportionality.

\mathbf{X}	\mathbf{Y}
2	2.5
3	3.75
4	5
9	11.25

\mathbf{X}	\mathbf{Y}
50	3
75	4.5
100	6
140	8.4

In an equation, write the equation in the form $y=$ kx.

Examples:

$$
y=5 x
$$

Click
$y=\frac{1}{4} x$

Click

$$
y=3.5 x
$$

Click

Find the constant of proportionality: (click to reveal)

$$
\begin{array}{ll}
y=3.6 x & y=53 x \\
y=0.38 x & y=\frac{3}{8} x \\
y=\frac{2}{3} x & y=1.85 x
\end{array}
$$

Find the constant of proportionality.

$$
y=\frac{1}{9} x
$$

Find the constant of proportionality.

$$
y=12.9 x
$$

Find the constant of proportionality.

$$
y=0.45 x
$$

in a graph, cnoose a point (x, y) to tind and simpilty the ratio.

$(2,24)$

$$
k=\frac{y}{x}=\frac{24}{2}=12
$$

Chaperones

Find the constant of proportionailiy.

Click

Find the constant of proportionality.

Find the constant of proportionality.

VVIIIIy ㄷyualivil
For Proportions

Return to Table of Contents

The constant of proportionality and the unit rate are equivalent.

We can use the constant of proportionality to help write equations using proportional relationships.

By transforming the equation from: $k=\frac{y}{x} \quad$ to $\mathbf{y}=\boldsymbol{k} \mathbf{x}$, we can write an equation that can be applied to various situations.
*Remember: x is the independent variable and y is the dependent variable. This means that a change in x will effect y.

You are buying Jersey Tomatoes for a cost of 2 pounds for $\$ 3.98$. Write an equation to represent the proportional relationship.

- Let $\mathrm{c}=$ cost
p = pounds

At the candy store, you purchase 5 lbs for $\$ 22.45$. Write an equation to represent the proportional relationship.

- Let $\mathbf{c}=\mathbf{c o s t}$

$$
p=\text { pounds }
$$

- Determine the unit rate:

Click

- Write an equation to relate the two quantities:

Click

Write an equation to represent the proportional relationship shown in the table.

Gallons	10	15	20	25
Miles	247	370.5	494	617.5

$$
k=\frac{m}{g}=\frac{247}{10}=\frac{24.7}{1}
$$

Let $\mathrm{g}=$ gallons
$\mathrm{m}=$ miles

Click
vvrite an equation that represents the proportional relationship.

The total cost (c) of grapes for $\$ 1.40$ per pound(p)

- $A \quad c=1.4 p$
$B \quad p=1.4 c$
vvrite an equation tnat represents tne proportional relationship.

Shirts	5	15	25	35
Cost	$\$ 57.50$	$\$ 172.50$	$\$ 287.50$	$\$ 402.50$

B $c=11.5 \mathrm{~s}$
C $c=0.09 \mathrm{~s}$
D $s=0.09 c$

Vrite an equation that represents tne proportional relationship.

vvrite an equation that represents the proportional relationship.

You are ordering new menus for your restaurant. You pay $\$ 362.50$ for 50 menus.A $c=0.14 \mathrm{~m}$
B $\quad m=7.25 c$
C $m=0.14 c$
D $\quad c=7.25 \mathrm{~m}$
vvrite an equation that represents the proportional relationship.

Days, d	2	3	4	5
Hours, h	17	25.5	34	42.5

- $\quad d=8.5 h$

B $\quad d=\frac{2}{17} h$
C $h=\frac{2}{17} d$
D $h=8.5 d$

Uilueis cailuiliy viapils of Proportions

Remember, you can use a graph to determine if a relationship is proportional. How?

If the graph is a straight line going through the origin (0,0).
Once you determine that the relationship is proportional, you can calculate k, the constant of proportionality. Then, write an equation to represent the relationship.

What do these equations mean? Once we have determined the equation, we can understand what the graph was showing us visually.

The jitneys in Atlantic City charge passengers for rides. What amount do they charge per ride?

- Find a point on the graph

Click

- Use the point to find the unit rate

Click

- What does the unit rate represent?

Click

- What coordinate pair represents the unit rate?
- Does the line run through the unit rate?

Click

Click

Mark drives to work each day. His gas mileage is shown in the graph. What is the unit rate? What does it represent?

Find a point on the graph
Click
Use the point to find the unit rate

Click
What does the unit rate represent?

Click
What coordinate pair represents

- Does the line run through

Click the unit rate?

Jasmine gets paid for every dog that she walks according to the graph at the right. What does she earn per dog?

Find a point on the graph

Click

- Use the point to find the unit rate

Click

- Does the line run through the unit rate?
Click

Click

- What coordinate pair represents the unit rate?

Mary drives the bus. Her rate is shown in the graph. What is the unit rate? What does it represent?

- Find a point on the graph Click
- Use the point to find the unit rate

Click

- What does the unit rate represent?

Click

- What coordinate pair represents the unit rate?

Return to Table of Contents

Chocolates at the candy store cost \$6.00 per dozen. How much does one candy cost? Round your answer to the nearest cent.

Solution:

$$
\frac{\$}{\text { candy }} \quad \frac{6.00}{12}=\frac{x}{1}
$$

(Use equivalent rates to set up a proportions)

$$
\begin{gathered}
6.00(1)=12 x \\
0.50=x
\end{gathered}
$$

\$0.50 per candy

There are 3 books per student. There are 570 students. How many books are there?

Set up the proportion:
Books

Students

$\underline{3}=\ldots$ Where does the 570 go?
$\frac{3}{1}=\frac{x}{570}$
$3 \cdot 570=1 x$
$x=1,710$ books

The ratio of boys to girls is 4 to 5 . There are 135 people on a team. How many are girls?

Set up the proportion:

Girls
People
$\underline{5}=\square \quad$ Where does the 135 go?
$\frac{5}{9}=\frac{x}{135}$
$5 \cdot 135=9 x$
$675=9 x$
$x=75$

How did we determine this ratio?

Cereal costs \$3.99 tor a one pound dox. vvnat is the price per ounce? Round your answer to the nearest penny.

Vvnich is the better buy?
Brand A: \$2.19 for 12 ounces
Brand B: \$2.49 for 16 ounces

C Brand A
B Brand B

Inere are 4 giris tor every 10 boys at the party. There are 56 girls at the party. How many boys are there?
ine tarmer nas cows and cnickens. He owns b chickens for every cow. He has a total of 96 animals. How many cows does he own?
ine auditorium can noid 1 person tor every 5 square feet. It is 1210 square feet. How many people can the auditorium hold? and 2 oz of bread crumbs. 50 people will be attending the dinner. How many ounces of bread crumbs should be purchased?

IVary received 4 votes tor every vote that Jane received. 1250 people voted. How many votes did Jane receive?

10 make the desired snade ot pınk paınt, Brandy uses 3 oz . of red paint for each oz. of white paint. She needs one quart of pink paint. How many oz. of red paint will she need? (1 quart = 32 ounces)

ivaking sense of Your Answers

Sometimes your answer will be a decimal or fraction that may not make sense as an answer.

Double check:

- Reread the problem
- Does your answer make sense?
- Do you need to round your answer?
- If so, which way should you round your answer? relationship is directly proportional.

Hayıey learned a total ot 13 appetızer recıpes over the course of 3 weeks of culinary school. How many weeks does she need to complete to have learned 21 appetizers? Assume the relationship is directly proportional.

Kailyn took a total ot 2 quizzes over the course of 5 days. After attending 16 days of school this quarter, how many quizzes will Kailyn have taken in total? Assume the relationship is directly proportional.

Brittany Daked 18 cookies witn 1 cup of tiour. How many cups of flour does Brittany need in order to bake 27 cookies? Assume the relationship is directly proportional.

Snane caugnt a total of 10 tisn over the course of 2 days on a family fishing trip. At the end of what day will Shane have caught his 22 fish? Assume the relationship is directly proportional.
in a sample ot 50 randomly selected students at a school, 38 students eat breakfast every morning. There are 652 students in the school. Using these results, predict the number of students that eat breakfast.

A 76
B 123
C 247
D 496

Question from ADP Algebra I
End-of-Course Practice Test

Return to Table of Contents

Scale drawings are used to represent objects that are either too large or too small for a life size drawing to be useful.

Examples:

A life size drawing of an ant or an atom would be too small to be useful.

A life size drawing of the state of New Jersey or the Solar System would be too large to be useful.

A scale is always provided with a scale drawing.
The scale is the ratio: drawing
real life (actual)

When solving a problem involving scale drawings you should:

- Write the scale as a ratio
- Write the second ratio by putting the provided information in the correct location (drawing on top \& real life on the bottom)
- Solve the proportion

Example:
This drawing has a scale of "1:10", so anything drawn with the size of "1" would have a size of "10" in the real world, so a measurement of 150 mm on the drawing would be 1500 mm on the real horse.

The distance between Philadelphia and San Francisco is 2,950 miles. You look on a map and see the scale is 1 inch : 100 miles. What is the distance between the two cities on the map?

$$
\frac{\text { drawing }}{\text { actual }}=\frac{1}{100}
$$

Write the scale as a ratio
$\frac{1}{100}=\frac{\mathrm{x}}{2950}$
$100 \mathrm{x}=2950$
$x=29.5$
29.5 inches on the map

On a map, the distance between your town and Washington DC is 3.6 inches. The scale is 1 inch : 55 miles. What is the distance between the two cities?

Un a map witn a scale of 1 inch $=100$ miles, the distance between two cities is 7.55 inches. If a car travels 55 miles per hour, about how long will it take to get from one city to the other.

A 13 hrs 45 min .
B 14 hrs 30 min .
C 12 hrs
D 12 hrs 45 min .

Un a map, the scale is $1 / 2$ inch= 300 miles. Find the actual distance between two stores that are $51 / 2$ inches apart on the map.

A 3000 miles
B 2,727 miles
C 3,300 miles
D 1,650 miles
ine tigure is a scale ot the east side ot a nouse. In the drawing, the side of each square represents 4 feet. Find the width and height of the door.A 4 ft by 9 ftB 4 ft by 12 ftC 4 ft by 8 ft
D 4 ft by 10 ft

71 Ine distance between ivioorestown, NJ and Duck, NC is 910 miles. What is the distance on a map with a scale of 1 inch to 110 miles?
ine distance detween Pniladeıpnıa and Las vegas is 8.5 inches on a map with a scale 1.5 in : 500 miles. What is the distance in miles?

You are builaing a room that is 4.6 m long and 3.3 m wide. The scale on the architect's drawing is 1 cm : 2.5 m . What is the length of the room on the drawing?

You are dullaing a room that is 4.6 m long and 3.3 m wide. The scale on the architect's drawing is $1 \mathrm{~cm}: 2.5 \mathrm{~m}$. What is the width of the room on the drawing?

Find the rength ot a $/ 2$ inch wide wail on a scale drawing with a scale 1 inch : 2 feet.

You recentiy purcnased a scaie model ot a car. The scale is 15 cm : 10 m . What is the length of the model car if the real car is $4 \mathbf{m}$?
you recently purcnased a scale model ot a car. The scale is 15 cm : 10 m . The length of the model's steering wheel is $1.25 \mathbf{c m}$. What is the actual length of the steering wheel?

Return to Table of Contents

Two objects are similar if they are the same shape but different sizes.

In similar objects:

- corresponding angles are congruent
- corresponding sides are proportional

To check for similarity:

- Check to see that corresponding angles are congruent
- Check to see that corresponding sides are proportional (Cross products are equal)

Exampie:

Is the pair of polygons similar? Explain your answer.

6 yd

4.5 yd
$\frac{4}{6}=\frac{3}{4.5}$
$4(4.5)=6(3) \quad$ OR $\quad 4(4.5)=6(3)$
$18=18$
YES
$\frac{4}{3}=\frac{6}{4.5}$
$(4.5)=6(3)$
$18=18$
YES

Exampie:

Is the pair of polygons similar? Explain your answer.

$$
\begin{aligned}
& \frac{5}{10}=\frac{8}{13} \\
& 5(13)=10(8) \\
& 65=80 \\
& \text { NO }
\end{aligned}
$$

OR

$$
\begin{aligned}
& \frac{5}{8}=\frac{10}{13} \\
& 5(13)=8(10) \\
& 65=80 \\
& \text { NO }
\end{aligned}
$$

Are the polygons similar? You must de able to justify your answer. (Shapes not drawn to scale.)

Yes
No

21 ft

Are the polygons similar? You must de able to justify your answer. (Shapes not drawn to scale.)

Are the polygons similar? you must be able to justify your answer. (Shapes not drawn to scale.)

Yes
No

15 yd

Example:

Find the value of x in the pair of similar polygons.

$$
\begin{aligned}
\frac{15}{x} & =\frac{6}{10} \\
15(10) & =6 x \\
150 & =6 x \\
25 \mathrm{~cm} & =x
\end{aligned}
$$

OR
$15(10)=6 x$
$150=6 x$
$25 \mathrm{~cm}=x$

Find the value of y in the pair of similar polygons.

8f Fina the measure of the missing value in the pair of similar polygons. (Shapes not drawn to scale.)

Find the measure of the missing vaiue in the pair of similar polygons. (Shapes not drawn to scale.)

Find the measure of the missing vaiue in the pair of similar polygons. (Shapes not drawn to scale.)

17 m

Find the measure ot the missing vaiue in the pair of similar polygons. (Shapes not drawn to scale.)

Find the measure of the missing vaiue in the pair of similar polygons. (Shapes not drawn to scale.)

Find the measure of the missing vaiue in the pair of similar polygons. (Shapes not drawn to scale.)

y3 Find the measure ot the missing vaiue in the pair of similar polygons. (Shapes not drawn to scale.)

5 mm

